nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 03 v.56 15-29
Analysis of Meiyu precipitation characteristics and influencing factors over the Yangtze-Huai River Basin
Email: young_sd@nuist.edu.cn;
DOI: 10.13928/j.cnki.wrahe.2025.03.002
English author unit:

Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology;School of Hydrology and Water Resources, Nanjing University of Information Science and Technology;China Electric Power Research Institute;State Grid Henan Electric Power Company Electric Power Research Institute;

Abstract:

[Objective]The Meiyu phenomenon stands as a distinctive weather occurrence in East Asia, with its precipitation levels during this period exerting significant influence on the emergence of droughts and floods during the summer, thereby incurring substantial socio-economic losses. Therefore, it is necessary to analyze the precipitation characteristics and influencing factors during the Meiyu period over the Yangtze-Huai River Basin, which will help to provide reference for the early warning of drought and flooding.[Methods]This study used observed daily precipitation data from 239 meteorological stations over the Yangtze-Huai River Basin from 1961 to 2020 combined with NOAA and ERA5 reanalysis data to analyze the frequency of the number of days without rainfall and heavy downpour and through the application of Empirical Orthogonal Functions(EOF), it examines the precipitation patterns during the Meiyu period, alongside its correlation with sea surface temperature(SST) and water vapor flux.[Results]Over the Yangtze-Huai River Basin, the average number of days without rainfall during the Meiyu period is distributed incrementally from south to north, and there is a significant increasing trend in Jianghuai area(area Ⅲ) from 1961 to 2020. Over the past six decades, the basin has witnessed 47 heavy downpour events, and the number of stations with daily precipitation up to the level of exceptionally heavy rainfall on each date during the Meiyu period had a significant upward trend. Two primary spatial precipitation distribution patterns emerge during the Meiyu period within the basin: one demonstrating uniform basin-wide trends, showcasing an overall upward trend in precipitation, while the other manifests a north-south antiphase distribution.[Conclusion]The increase in the number of days without rain and the number of stations with precipitation up to the level of exceptionally heavy rainfall during the Meiyu period over the Yangtze-Huai River Basin need to be of some concern. A notable correlation between the Nino3.4 index and Meiyu period precipitation, with higher(lower) Nino3.4 values indicative of increased(decreased) Meiyu precipitation in the Yangtze-Huai River Basin. Furthermore, precipitation fluctuations during this period exhibit significant positive correlations with SST anomalies across tropical Indian Ocean, tropical central-eastern Pacific, and tropical Atlantic regions during preceding winter, spring and concurrent periods. Specifically, positive SST anomalies in these regions correspond to increased Meiyu precipitation, and vice versa. Water vapor transport influencing Meiyu period precipitation primarily originates from the Bay of Bengal, South China Sea, and the western periphery of the western Pacific subtropical high. By June, the convergence of water vapor transport from the South China Sea and western Pacific fosters a robust water vapor flux belt. Subsequently, in July, intensified water vapor transport from the South China Sea and Bay of Bengal further fortifies this flux belt.

KeyWords: Yangtze-Huai River Basin;Meiyu;EOF analysis;SST;water vapor transport;precipitation;climate change;influence factor
References

[1] 谢志清,杜银,曾燕,等.江淮流域年极端降水事件分类特征及其致洪风险[J].中国科学:地球科学,2018,48(9):1153-1168.XIE Z Q,DU Y,ZENG Y,et al.Classification of yearly extreme precipitation events and associated flood risk in the Yangtze-Huaihe River valley[J].Science China Earth Sciences,2018,61(9):1341-1356.

[2] 姚蕊,杨惠琳,张书亮,等.安徽省极端降水演变规律及与气候因子遥相关研究[J].水利水电技术(中英文),2024,55(1):62-73.YAO R,YANG H L,ZHANG S L,et al.Spatio-temporal evolution of extreme precipitation and their teleconnection with climate factors in Anhui Province[J].Water Resources and Hydropower Engineering,2024,55(1):62-73.

[3] 傅云飞,罗晶,王东勇,等.夏季江淮地区降水的气候变化研究进展[J].暴雨灾害,2020,39(4):317-324.FU Y F,LUO J,WANG D Y,et al.A review of studies on climate change of summer precipitation in the Jianghuai region[J].Torrential Rain and Disasters,2020,39(4):317-324.

[4] 刘芸芸,丁一汇.2020年超强梅雨特征及其成因分析[J].气象,2020,46(11):1393-1404.LIU Y Y,DING Y H.Characteristics and possible causes for the extreme Meiyu in 2020[J].Meteorological Monthly,2020,46(11):1393-1404.

[5] ZHOU Z Q,XIE S P,ZHANG R H.Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(12):e2022255118.

[6] 陶诗言,赵煜佳,陈晓敏.东亚的梅雨期与亚洲上空大气环流季节变化的关系[J].气象学报,1958,29(2):119-134.TAO S Y,ZHAO Y J,CHEN X M.The relationship between Mei-yu in far east and the behaviour of circulation over Asia[J].Acta Meteorologica Sinica,1958,29(2):119-134.

[7] 丁一汇,柳俊杰,孙颖,等.东亚梅雨系统的天气-气候学研究[J].大气科学,2007,31(6):1082-1101.DING Y H,LIU J J,SUN Y,et al.A study of the synoptic-climatology of the Meiyu system in East Asia[J].Chinese Journal of Atmospheric Sciences,2007,31(6):1082-1101.

[8] 唐玉,李栋梁.江淮梅雨与东亚副热带夏季风进程变异的关系[J].气象科学,2020,40(2):169-179.TANG Y,LI D L.The relationship between the Meiyu in the Yangtze-Huaihe Region and the variation of the East Asian subtropical summer monsoon process[J].Journal of the Meteorological Sciences,2020,40(2):169-179.

[9] 郭志荣,陈旭红,江燕如,等.中国东部夏季水汽输送的年代际变化特征[J].大气科学学报,2014,37(5):568-574.GUO Z R,CHEN X H,JIANG R Y,et al.Interdecadal variation characteristic of water vapor transfer over eastern China in summer[J].Transactions of Atmospheric Sciences,2014,37(5):568-574.

[10] 丁一汇,柳艳菊,宋亚芳.东亚夏季风水汽输送带及其对中国大暴雨与洪涝灾害的影响[J].水科学进展,2020,31(5):629-643.DING Yihui,LIU Yanju,SONG Yafang.East Asian summer monsoon moisture transport belt and its impact on heavy rainfalls and floods in China[J].Advances in Water Science,2020,31(5):629-643.

[11] SHI Y,JIANG Z H,LIU Z Y,et al.A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in different stages of the East Asian summer monsoon [J].Journal of Climate,2020,33(3):977-992.

[12] 施逸,江志红,李肇新.基于拉格朗日方法的中国东部雨季水汽输送垂直特征[J].大气科学,2022,46(2):380-392.SHI Y,JIANG Z H,LI Z X.Vertical characteristics of water vapor transport during the rainy season in Eastern China based on the Lagrangian method [J].Chinese Journal of Atmospheric Sciences (in Chinese),2022,46(2):380-392.

[13] 黄丁安,卢楚翰,孔阳,等.基于ERA5再分析资料对2020年6月江淮区域水汽源汇的诊断分析[J].气象科学,2022,42(1):44-50.HUANG D A,LU C H,KONG Y,et al.Diagnostic study of moisture sources and sinks over the Yangtze-Huaihe River Basin in June 2020 based on ERA5 reanalysis data [J].Journal of the Meteorological Sciences,2022,42(1):44-50.

[14] DING Y H,SUN Y.A study on anomalous activities of East Asian summer monsoon during 1999[J].Journal of the Meteorological Society of Japan Ser II,2001,79(6):1119-1137.

[15] XU X D,LU C G,DING Y H,et al.What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau?[J].Atmospheric Science Letters,2013,14(4):227-234.

[16] 孙博,王会军,周波涛,等.中国水汽输送年际和年代际变化研究进展[J].水科学进展,2020,31(5):644-653.SUN B,WANG H J,ZHOU B T,et al.A review on the interannual and interdecadal variations of water vapor transport over China during past decades[J].Advances in Water Science,2020,31(5):644-653.

[17] BJERKNESS J.Atmospheric teleconnection from equatorial Pacific[J].Monthly Weather Review,1969,97(3),163-172.

[18] 钟倩媚,马静,王璐.2016与2020年江淮流域梅雨期降水准双周振荡特征的对比分析[J].气象学报,2023,81(2):235-257.ZHONG Q M,MA J,WANG L.Biweekly oscillation of the Meiyu-season precipitation in 2016 and 2020 over the Yangtze-Huaihe River Basin:a comparative analysis[J].Acta Meteorologica Sinica,2023,81(2):235-257.

[19] 马潇祎,范可,杨洪卿.2021年盛夏中国东部极端降水月际演变成因及可预测性[J].大气科学学报,2024,47(4):541-556.MA X Y,FAN K,YANG H Q.Causes and predictability of inter-month evolution of extreme precipitation over eastern China in midsummer 2021[J].Transactions of Atmospheric Sciences,2024,47(4):541-556.

[20] 陈兵,蒋元春,李栋梁,等.江淮梅雨对东亚副热带夏季风进程及海温异常的响应[J].气象科学,2020,40(5):669-678.CHEN Bing,JIANG Yuanchun,LI Dongliang,et al.Response of Meiyu in Jianghuai region on the process of East Asian subtropical summer monsoon and sea surface temperature anomaly[J].Journal of the Meteorological Sciences,2020,40(5):669-678.

[21] TANG S L,LUO J J,HE J Y,et al.Toward understanding the extreme floods over Yangtze River valley in June-July 2020:role of tropical oceans[J].Advances in Atmospheric Sciences,2021,38(12):2023-2039.

[22] 蒲于莉,冯娟,李建平.东部型El Niňo事件发展期秋季对中国极端降水的影响[J].高原气象,2023,42(6):1457-1467.PU Y L,FENG J,LI J P.Influence of developing phase of eastern Pacific El Niňo events on the autumn extreme precipitation in China[J].Plateau Meteorology,2023,42(6):1457-1467.

[23] SUN B,WANG H J,WANG A H,et al.Regularity and irregularity of the seasonal northward march of the east asian summer wet environment and the influential factors[J].Journal of Climate,2021,34(2):545-566.

[24] WANG J,HE J H,LIU X F,et al.Interannual variability of the Meiyu onset over Yangtze-Huaihe River valley and analyses of its previous strong influence signal[J].Chinese Science Bulletin,2009,54(4):687-695.

[25] 王婷,李双双,延军平,等.基于ENSO发展过程的中国夏季降水时空变化特征[J].自然资源学报,2022,37(3):803-815.WANG Ting,LI Shuangshuang,YAN Junping,et al.Spatio-temporal variation of summer precipitation in China based on ENSO development process[J].Journal of Natural Resources,2022,37(3):803-815.

[26] 钱维宏,朱江,王永光,等.江淮梅雨和赤道太平洋区域海温变化的关系[J].科学通报,2009,54(1):79-84.QIAN W H,ZHU J,WANG Y G,et al.Regional relationship between the Jiang-Huai Meiyu and the equatorial surface-subsurface temperature anomalies[J].Chinese Science Bulletin,2009,54(1):79-84.

[27] 王永光,娄德君,刘芸芸.2020年长江中下游梅汛期降水异常特征及其成因分析[J].暴雨灾害,2020,39(6):549-554.WANG Yongguang,LOU Dejun,LIU Yunyun.Characteristics and causes analysis of abnormal Meiyu rainfall in the middle and lower reaches of Yangtze River valley in 2020[J].Torrential Rain and Disasters,2020,39(6):549-554.

[28] LI H,SUN B,WANG H J,et al.Joint effects of three oceans on the 2020 super Meiyu[J].Atmospheric and Oceanic Science Letters,2022,15(1):100127.

[29] ZHANG S Y,LIU Y M,SHENG C,et al.Influence of boreal spring sea surface temperature anomalies over the tropical South Atlantic on the Meiyu onset[J].Climate Dynamics,2023,60(11):3613-3628.

[30] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.WEI Fengying.Modern Climatic Statistical Diagnosis and Prediction Technology(in Chinese)[M].Beijing:China Meteorological Press,2007.

[31] 夏志明,廖凯涛,郭利平,等.基于EOF和MK趋势分析的赣江流域降水时空分布格局[J].水土保持研究,2023,30(5):223-233.XIA Zhiming,LIAO Kaitao,GUO Liping,et al.Spatiotemporal distribution pattern of precipitation in Ganjiang River Basin based on EOF and MK trend analysis[J].Research of Soil and Water Conservation,2023,30(5):223-233.

[32] XU X R,TIAN H Y,TIAN W S,et al.The spatiotemporal patterns of the upper-tropospheric water vapor over the Tibetan Plateau in summer based on EOF analysis[J].Journal of Climate,2022,35(15):5033-5051.

[33] 马章怀,王一博,高泽永.基于EOF的1951—2020年东亚季风区降水特征及其对夏季风不同配置的响应研究[J].高原气象,2024:1-13.https://link.cnki.net/urlid/62.1061.P.20240207.2142.006.MA Z H,WANG Y B,GAO Z Y.An EOF-Based study of precipitation characteristics and their responses to different configurations of summer monsoon in the east Asian monsoon region from 1951 to 2020[J].Plateau Meteorology,2024:1-13.https://link.cnki.net/urlid/62.1061.P.20240207.2142.006.

[34] 唐筱,陶丽,邓敏君.华北—东北地区南部汛期降水影响因子分析及季节预报模型的建立[J].气象学报,2023,81(5):741-763.TANG X,TAO L,DENG M J.Screening of predictors and development of a statistical prediction model for flood-season precipitation in North—southern Northeast China[J].Acta Meteorologica Sinica,2023,81(5):741-763.

[35] 戚佳晨,宋晓猛.1978—2012年长江三角洲城市群极端小时降水时空变化特征[J].水利水电技术(中英文),2023,54(12):75-92.QI J C,SONG X M.Spatio-temporal changes of extreme hourly precipitation in the Yangtze River Delta urban agglomeration during 1978—2012[J].Water Resources and Hydropower Engineering,2023,54(12):75-92.

[36] SHI X R,YANG P,XIA J,et al.Effects of precipitation on vegetation and surface water in the Yellow River Basin during 2000-2021[J].Journal of Geographical Sciences,2024,34(4):633-653.

[37] 周曾奎.江淮梅雨[M].北京:气象出版社,1996.ZHOU Zengkui.Jianghuai Meiyu[M].Beijing:China Meteorological Pres,1996.

[37] 徐群.121年梅雨演变中的近期强年代际变化[J].水科学进展,2007,18(3):327-335.XU Qun.Recent strong decadal change of Meiyu in 121 years[J].Advances in Water Science,2007,18(3):327-335.

[38] ZHU X,WU Z,HE J.Anomalous Meiyu onset averaged over the Yangtze River valley[J].Theoretical and Applied Climatology,2008,94(1):81-95.

[39] 梁萍,丁一汇,何金海,等.江淮区域梅雨的划分指标研究[J].大气科学,2010,34(2):418-428.LIANG Ping,DING Yihui,HE Jinhai,et al.A study of determination index of regional Meiyu over the Yangtze-Huaihe Basin[J].Chinese Journal of Atmospheric Sciences,2010,34(2):418-428.

[40] SUN B,WANG H J,ZHOU B T,et al.Interdecadal variation in the synoptic features of Mei-Yu in the Yangtze River valley region and relationship with the Pacific decadal oscillation[J].Journal of Climate,2019,32(19):6251-6270.

[41] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.梅雨监测指标:GB/T 33671—2017[S].北京:中国标准出版社,2017.General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,National Standardization Administration of China.Meiyu monitoring index:GB/T 33671—2017.Beijing:Standards Press of China,2017.

[42] 姚飞,杨秀芹,刘慕嘉,等.江淮流域梅雨过程识别及梅雨期分级降水时空特征[J].地理科学进展,2023,42(1):145-160.YAO Fei,YANG Xiuqin,LIU Mujia,et al.Identification of Meiyu process and spatiotemporal characteristics of different precipitation levels during the Meiyu period over the Yangtze-Huai River Basin[J].Progress in Geography,2023,42(1):145-160.

[43] 姚飛,杨秀芹,刘慕嘉,等.江淮流域及其子区域梅雨监测时空数据集(1961—2020)[J/OL].全球变化数据仓储电子杂志(中英文),2022,9(10).https://doi.org/10.3974/geodb.2022.10.01.V1.YAO Fei,YANG Xiuqin,LIU Mujia,et al.Meiyu Monitoring Dataset over Yangtze-Huai River Basin (1961—2020)[J/OL].Digital Journal of Global Change Data Repository,2022,9(10).https://doi.org/10.3974/geodb.2022.10.01.V1.

[44] TAO L,Chen D.An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability [J].Journal of Climate,2012,25(15):5361-5373.

[45] 刘祥,何军,庞玥,等.重庆水电流域夏季降水模态分析及其水汽输送特征[J].高原气象,2024,43(2):421-433.LIU X,HE J,PANG Y,et al.The analysis of summer precipitation modes and its characteristics of water vapor transportation in hydroelectric basins of Chongqing.Plateau Meteorology.2024,43(2):421-433.

[46] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.厄尔尼诺/拉尼娜事件判别方法:GB/T 33666—2017[S].北京:中国标准出版社,2017.General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,National Standardization Administration of China.Identification method for El Nino/La Nina events:GB/T 33666—2017[S].Beijing:Standards Press of China,2017.

Basic Information:

DOI:10.13928/j.cnki.wrahe.2025.03.002

China Classification Code:P426.6

Citation Information:

[1]张洁,杨秀芹,滑申冰等.江淮流域梅雨降水特征及影响因素分析[J].水利水电技术(中英文),2025,56(03):15-29.DOI:10.13928/j.cnki.wrahe.2025.03.002.

Fund Information:

国家电网有限公司总部科技项目(5500-202324180A-1-1-ZN); 国家自然科学基金项目(52209032)

Search Advanced Search

quote

GB/T 7714-2015
MLA
APA